Machine Learning Basics - Master the ML Techniques in 3 mins! - geeksorgeeks

Machine Learning Basics – Master the ML Techniques in 3 mins!

Machine Learning (ML) is basically that field of computer science with the help of which computer systems can provide sense to data in much the same way as human beings do. In simple words, ML is a type of artificial intelligence that extract patterns out of raw data by using an algorithm or method. The key focus of ML is to allow computer systems to learn from experience without being explicitly programmed or human intervention.

Megatrends, insane technologies, and automation have taken over and we can proudly say that it is all for good. With the power of machine learning, businesses have become powerful and are reaching new heights.

 

Machine Learning Basics – Types of Techniques

Its rightly said that your data is only as good as what you do with it and how you manage it. Businesses and technology leaders apply machine learning, experiment, anticipate and predict the future.
The machine learning is used to build predictive models by extracting patterns from large datasets. In predictive data, these models are helpful. It is used in analytics applications like price prediction, risk assessment, predicting customer behavior, and document classification.
With continuous data flooding in, the machine learning models ensure that the solution is constantly updated. With appropriate and constantly changing data sources in the context of machine learning, there is an opportunity to predict the future.
So what are the types of machine learning techniques?
There are three types of ML Techniques:

1. Supervised Learning

Supervised learning as the name suggests getting supervised by someone. It is a learning in which the machine uses data which is already tagged with the correct answer. After that, the machine is provided with a new set of data.
With the help of supervised learning, the algorithm analyzes the training data (set of training examples) and produces a correct outcome from labeled data.
Here the machine has already learned the things from previous data. So, now is the time it uses the learning wisely.
Supervised Learning Diagram - Machine Learning Basics

For example – if we take a fruit basket, the machine will first classify the fruit with its shape and color and would confirm the fruit name. If one searches for grapes, then machine learning from its training data (basket containing fruits) will use the prior knowledge.
It will then apply the knowledge to test data and will then provide you with the results.
In supervised learning, we start with a dataset that has training examples, each example has an associated label which identifies it.


2. Unsupervised Learning

In unsupervised learning, the training of the machine is done using the information which is neither classified nor labeled. The machine learning algorithm acts on information without guidance. It groups unsorted information according to similarities, patterns, and differences without any prior training or supervision.
Since there is no training given to the machine, the machine itself finds the hidden structure in unlabeled data and interprets it.
So, suppose if the machine is provided with the image of a pen and pencil and its information is not available then it can be categorized according to the similarities, patterns, and differences.
It is basically differentiated on the basis of pre-defined notions. The machine can estimate what kind of groups it can form to differentiate.

Unsupervised Learning Diagram - Machine Learning Basics

For example – a wooden stick with a cap can be a pen and with no cap a pencil. With no learning and no training, the machine tries to interpret itself.

3. Reinforcement Learning

Reinforcement learning is a very interesting kind of learning. There’s no answer key which can tell what’s right. But, the reinforcement learning agent still decides how to act to perform its task. This machine learning technique is all about taking actions that are suitable and maximize the reward in a particular situation. It is when the learner receives rewards and punishments for their actions.


reinforcement learning diagram - machine learning basics

For example – In a given scenario, the reward could be utility and the agent could be told to receive as much utility as possible in order to “win”.
Basically, the agent decides what to do to perform the given task. Now, since the training dataset is missing, it is bound to learn from its experience.

Summary

These are just the basics of machine learning, machine learning has more to it. It is the core of our journey towards artificial general intelligence. In no time, this will change the industry and have a massive impact on our day-to-day lives. That is why I believe that machine learning is worth understanding. If this is not related to your profession, it is not an issue. But, you should be aware of this at least at the conceptual level and therefore we have curated such articles for you. Remember, it’s never too late!



Please do help us grow by sharing this with your friends 



 

 


No comments:

Post a Comment

Your feedback is highly appreciated and will help us to improve our content.